Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6270, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725337

RESUMO

Nutrient acquisition systems are often crucial for pathogen growth and survival during infection, and represent attractive therapeutic targets. Here, we study the protein machinery required for heme uptake in the opportunistic pathogen Acinetobacter baumannii. We show that the hemO locus, which includes a gene encoding the heme-degrading enzyme, is required for high-affinity heme acquisition from hemoglobin and serum albumin. The hemO locus includes a gene coding for a heme scavenger (HphA), which is secreted by a Slam protein. Furthermore, heme uptake is dependent on a TonB-dependent receptor (HphR), which is important for survival and/or dissemination into the vasculature in a mouse model of pulmonary infection. Our results indicate that A. baumannii uses a two-component receptor system for the acquisition of heme from host heme reservoirs.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Transporte Biológico , Feminino , Humanos , Camundongos Endogâmicos BALB C , Família Multigênica
2.
J Med Chem ; 64(11): 7691-7701, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038119

RESUMO

A renal outer medullary potassium channel (ROMK, Kir1.1) is a putative drug target for a novel class of diuretics with potential for treating hypertension and heart failure. Our first disclosed clinical ROMK compound, 2 (MK-7145), demonstrated robust diuresis, natriuresis, and blood pressure lowering in preclinical models, with reduced urinary potassium excretion compared to the standard of care diuretics. However, 2 projected to a short human half-life (∼5 h) that could necessitate more frequent than once a day dosing. In addition, a short half-life would confer a high peak-to-trough ratio which could evoke an excessive peak diuretic effect, a common liability associated with loop diuretics such as furosemide. This report describes the discovery of a new ROMK inhibitor 22e (MK-8153), with a longer projected human half-life (∼14 h), which should lead to a reduced peak-to-trough ratio, potentially extrapolating to more extended and better tolerated diuretic effects.


Assuntos
Natriuréticos/química , Bloqueadores dos Canais de Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Potenciais de Ação/efeitos dos fármacos , Animais , Benzofuranos/química , Pressão Sanguínea/efeitos dos fármacos , Diuréticos/química , Diuréticos/metabolismo , Diuréticos/farmacologia , Cães , Meia-Vida , Haplorrinos , Humanos , Masculino , Natriuréticos/metabolismo , Natriuréticos/farmacologia , Piperazinas/química , Potássio/urina , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Endogâmicos SHR
3.
J Biol Chem ; 296: 100147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33277359

RESUMO

Gram-negative pathogens are enveloped by an outer membrane that serves as a double-edged sword: On the one hand, it provides a layer of protection for the bacterium from environmental insults, including other bacteria and the host immune system. On the other hand, it restricts movement of vital nutrients into the cell and provides a plethora of antigens that can be detected by host immune systems. One strategy used to overcome these limitations is the decoration of the outer surface of gram-negative bacteria with proteins tethered to the outer membrane through a lipid anchor. These surface lipoproteins (SLPs) fulfill critical roles in immune evasion and nutrient acquisition, but as more bacterial genomes are sequenced, we are beginning to discover their prevalence and their different roles and mechanisms and importantly how we can exploit them as antimicrobial targets. This review will focus on representative SLPs that gram-negative bacteria use to overcome host innate immunity, specifically the areas of nutritional immunity and complement system evasion. We elaborate on the structures of some notable SLPs required for binding target molecules in hosts and how this information can be used alongside bioinformatics to understand mechanisms of binding and in the discovery of new SLPs. This information provides a foundation for the development of therapeutics and the design of vaccine antigens.


Assuntos
Bactérias Gram-Negativas/metabolismo , Lipoproteínas/metabolismo , Antígenos de Bactérias/imunologia , Meios de Cultura , Citoplasma/metabolismo , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/fisiologia , Imunidade Inata
4.
Pathog Dis ; 75(2)2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158534

RESUMO

The surface of many Gram-negative bacteria contains lipidated protein molecules referred to as surface lipoproteins or SLPs. SLPs play critical roles in host immune evasion, nutrient acquisition and regulation of the bacterial stress response. The focus of this review is on the SLPs present in Neisseria, a genus of bacteria that colonise the mucosal surfaces of animals. Neisseria contains two pathogens of medical interest, namely Neisseria meningitidis and N. gonorrhoeae. Several SLPs have been identified in Neisseria and their study has elucidated key strategies used by these pathogens to survive inside the human body. Herein, we focus on the identification, structure and function of SLPs that have been identified in Neisseria. We also survey the translocation pathways used by these SLPs to reach the cell surface. Specifically, we elaborate on the strategies used by neisserial SLPs to translocate across the outer membrane with an emphasis on Slam, a novel outer membrane protein that has been implicated in SLP biogenesis. Taken together, the study of SLPs in Neisseria illustrates the widespread roles played by this family of proteins in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Neisseria/metabolismo , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Humanos , Lipoproteínas/classificação , Lipoproteínas/genética , Neisseria/genética , Transporte Proteico , Transdução de Sinais , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 25(22): 5437-43, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318999

RESUMO

Using structure based drug design, a novel class of potent coagulation factor IXa (FIXa) inhibitors was designed and synthesized. High selectivity over FXa inhibition was achieved. Selected compounds were evaluated in rat IV/PO pharmacokinetic (PK) studies and demonstrated desirable oral PK profiles. Finally, the pharmacodynamics (PD) of this class of molecules were evaluated in thrombin generation assay (TGA) in Corn Trypsin Inhibitor (CTI) citrated human plasma and demonstrated characteristics of a FIXa inhibitor.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Fator IXa/antagonistas & inibidores , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Administração Oral , Animais , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Compostos Heterocíclicos com 3 Anéis/síntese química , Humanos , Estrutura Molecular , Ratos
6.
Bioorg Med Chem Lett ; 25(21): 4945-4949, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978966

RESUMO

Using structure based drug design (SBDD), a novel class of potent coagulation Factor IXa (FIXa) inhibitors was designed and synthesized. High selectivity over FXa inhibition was achieved. Selected compounds demonstrated oral bioavailability in rat IV/PO pharmacokinetic (PK) studies. Finally, the pharmacodynamics (PD) of this class of molecules was evaluated in Thrombin Generation Assay (TGA) in Corn Trypsin Inhibitor (CTI) citrated human plasma and demonstrated characteristics of a FIXa inhibitor.


Assuntos
Aminas/farmacologia , Inibidores Enzimáticos/farmacologia , Fator IXa/antagonistas & inibidores , Administração Oral , Aminas/síntese química , Aminas/química , Animais , Disponibilidade Biológica , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Fator IXa/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
7.
ACS Med Chem Lett ; 6(4): 461-5, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25941555

RESUMO

Elaboration of the oxazolidinedione series led to replacement of the exocyclic amides with substituted benzimidazoles. The structure-activity relationship (SAR) exploration resulted in the discovery of potent and selective nonsteroidal mineralocorticoid receptor (MR) antagonists with significantly improved microsomal stability and pharmacokinetic (PK) profile relative to the HTS hit 1a. One compound 2p possessed comparable efficacy as spironolactone (SPL) at 100 mg/kg (p.o.) in the rat natriuresis model. As such, this series was validated as a lead series for further optimization.

8.
Drug Metab Dispos ; 42(6): 1055-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24700822

RESUMO

Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.


Assuntos
Quimera/genética , Quimera/metabolismo , Hepatócitos/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Taxa de Depuração Metabólica/fisiologia , Camundongos , Camundongos SCID , Camundongos Transgênicos , Preparações Farmacêuticas/administração & dosagem
9.
Drug Metab Dispos ; 41(12): 2206-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24088325

RESUMO

The objective of the current study was to evaluate the mechanism of absorption and metabolism of a PEGylated peptide, MRL-1 (46 kDa), after s.c. dosing in dogs and rats. Thoracic lymph duct-cannulated (LDC) dog and rat models were developed that allowed continuous collection of lymph for up to 8 days. When [(3)H]MRL-1 was administered s.c. to LDC dogs, ∼73% of the administered radioactivity was recovered in pooled lymph over a period of 120 hours, suggesting that lymphatic uptake is the major pathway of s.c. absorption for this peptide. In agreement with these data, the systemic exposure of radioactivity related to [(3)H]MRL-1 in LDC dogs was decreased proportionately when compared with that in noncannulated control dogs. After i.v. dosing with [(3)H]MRL-1 in LDC dogs, 20% of the administered radioactivity was recovered in pooled lymph over 168 hours, suggesting some level of recirculation of radioactivity related to [(3)H]MRL-1 from the plasma compartment into the lymphatic system. Experiments conducted in the LDC rat model also resulted in similar conclusions. Analysis of injection site s.c. tissue showed significant metabolism of [(3)H]MRL-1, which provides an explanation for the <100% bioavailability of therapeutic proteins and peptides after s.c. dosing. After s.c. dosing, the major circulating components in plasma were the parent peptide and the PEG-linker [(3)H]MRL-2. The metabolism profiles in lymph were similar to those in plasma, suggesting that the loss of peptide was minimal during lymphatic transport. After i.v. dosing in rats, [(3)H]MRL-1 was metabolized and excreted primarily in the urine as metabolites.


Assuntos
Benzopiranos/metabolismo , Sistema Linfático/metabolismo , Absorção , Administração Cutânea , Administração Intravenosa/métodos , Animais , Disponibilidade Biológica , Transporte Biológico/fisiologia , Cães , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Med Chem ; 53(10): 4028-37, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20423086

RESUMO

This paper describes the discovery of N-[(4R)-6-(4-chlorophenyl)-7-(2,4-dichlorophenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridin-4-yl]-5-methyl-1H-pyrazole-3-carboxamide (MK-5596, 12c) as a novel cannabinoid-1 receptor (CB1R) inverse agonist for the treatment of obesity. Structure-activity relationship (SAR) studies of lead compound 3, which had off-target hERG (human ether-a-go-go related gene) inhibition activity, led to the identification of several compounds that not only had attenuated hERG inhibition activity but also were subject to glucuronidation in vitro providing the potential for multiple metabolic clearance pathways. Among them, pyrazole 12c was found to be a highly selective CB1R inverse agonist that reduced body weight and food intake in a DIO (diet-induced obese) rat model through a CB1R-mediated mechanism. Although 12c was a substrate of P-glycoprotein (P-gp) transporter, its high in vivo efficacy in rodents, good pharmacokinetic properties in preclinical species, good safety margins, and its potential for a balanced metabolism profile in man allowed for the further evaluation of this compound in the clinic.


Assuntos
Fármacos Antiobesidade/síntese química , Piranos/síntese química , Piridinas/síntese química , Receptor CB1 de Canabinoide/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/farmacologia , Ligação Competitiva , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Cricetinae , Cricetulus , Cristalografia por Raios X , Cães , Agonismo Inverso de Drogas , Ingestão de Alimentos/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Glucuronídeos/metabolismo , Haplorrinos , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Conformação Molecular , Piranos/farmacocinética , Piranos/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos , Receptor CB1 de Canabinoide/genética , Estereoisomerismo , Relação Estrutura-Atividade
11.
Drug Metab Dispos ; 38(1): 108-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19797605

RESUMO

MRL-1, a cannabinoid receptor-1 inverse agonist, was a member of a lead candidate series for the treatment of obesity. In rats, MRL-1 is eliminated mainly via metabolism, followed by excretion of the metabolites into bile. The major metabolite M1, a glutathione conjugate of MRL-1, was isolated and characterized by liquid chromatography/mass spectrometry and NMR spectroscopic methods. The data suggest that the t-butylsulfonyl group at C-2 of furopyridine was displaced by the glutathionyl group. In vitro experiments using rat and monkey liver microsomes in the presence of reduced glutathione (GSH) showed that the formation of M1 was independent of NADPH and molecular oxygen, suggesting that this reaction was not mediated by an oxidative reaction and a glutathione S-transferase (GST) was likely involved in catalyzing this reaction. Furthermore, a rat hepatic GST was capable of catalyzing the conversion of MRL-1 to M1 in the presence of GSH. When a close analog of MRL-1, a p-chlorobenzenesulfonyl furopyridine derivative (MRL-2), was incubated with rat liver microsomes in the presence of GSH, p-chlorobenzene sulfinic acid (M2) was also identified as a product in addition to the expected M1. Based on these data, a mechanism is proposed involving direct nucleophilic addition of GSH to sulfonylfuropyridine, resulting in an unstable adduct that spontaneously decomposes to form M1 and M2.


Assuntos
Biocatálise , Glutationa Transferase/metabolismo , Piridinas/farmacocinética , Compostos de Enxofre/farmacocinética , Animais , Bile/química , Biotransformação/fisiologia , Cromatografia Líquida , Citosol/metabolismo , Cães , Glutationa/metabolismo , Haplorrinos , Humanos , Fígado/enzimologia , Espectroscopia de Ressonância Magnética , Masculino , Microssomos Hepáticos/enzimologia , Estrutura Molecular , NADP/metabolismo , Piridinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Especificidade da Espécie , Compostos de Enxofre/metabolismo , Espectrometria de Massas em Tandem
12.
Bioorg Med Chem Lett ; 19(17): 5195-9, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19632830

RESUMO

Obesity is a chronic medical condition that is affecting large population throughout the world. CB1 as a target for treatment of obesity has been under intensive studies. Taranabant was discovered and then developed by Merck as the 1st generation CB1R inverse agonist. Reported here is part of our effort on the 2nd generation of CB1R inverse agonist from the acyclic amide scaffold. We replaced the oxygen linker in taranabant with nitrogen and prepared a series of amino heterocyclic analogs through a divergent synthesis. Although in general, the amine linker gave reduced binding affinity, potent and selective CB1R inverse agonist was identified from the amino heterocycle series. Molecular modeling was applied to study the binding of the amino heterocycle series at CB1 binding site. The in vitro metabolism of representative members was studied and only trace glucuronidation was found. Thus, it suggests that the right hand side of the molecule may not be the appropriate site for glucuronidation.


Assuntos
Amidas/química , Fármacos Antiobesidade/química , Piridinas/química , Receptor CB1 de Canabinoide/antagonistas & inibidores , Amidas/síntese química , Amidas/farmacologia , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/farmacologia , Sítios de Ligação , Simulação por Computador , Agonismo Inverso de Drogas , Humanos , Microssomos Hepáticos/metabolismo , Piridinas/farmacologia , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...